У нас вы можете посмотреть бесплатно Niccolò Turcato - Winning the AI Olympics Challenge With Model-Based Reinforcement Learning или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this talk, we present a Reinforcement Learning (RL) approach that we implemented to tackle the "AI Olympics With RealAIGym" competition held at IJCAI 2023. Our algorithm, named Monte-Carlo Probabilistic Inference for Learning COntrol (MC-PILCO) [Amadio et al., 2022], is a Model-Based (MB) RL algorithm that proved remarkably data-efficient in several low-dimensional benchmarks, such as a cart-pole, a ball & plate, and a Furuta pendulum, both in simulation and real setups. MC-PILCO exploits data collected by interacting with the system to derive a model of the system dynamics, and optimizes the policy by simulating the system, rather than optimizing the policy directly on the actual system. When considering physical systems, this kind of approach can be highly performing and more data-efficient than Model-Free (MF) solutions. Niccolò Turcato https://www.dei.unipd.it/en/persona/8... "AI Olympics with RealAIGym" Competition at IJCAI 2023 https://ijcai-23.dfki-bremen.de/compe...