У нас вы можете посмотреть бесплатно Taylor Series Explained | Solving Taylor Series with Geometric Series | Complex Analysis #8 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Learn how to determine the Taylor Series for complex functions, even around tricky points! This video focuses on using the geometric series (1/(1-z)) as a powerful tool and explains how to find the Taylor Series radius of convergence. ✨ In this lesson, you'll learn: ► The definition of a Taylor Series for complex functions. ► How to utilize the geometric series for Taylor Series expansion. ► How to determine the radius of convergence for a Taylor Series. ► The fundamental relationship between analytic functions and Taylor Series. ☕ Support the Channel If you found this video helpful and would like to support the creation of more free math lessons, please consider buying me a coffee! It helps me turn this into a full-time job. ko-fi.com/themathcoach 📚 Resources & Playlists Full Complex Analysis Course: • Complex Analysis Explained (Full Course) Download the Lecture Notes: https://drive.google.com/file/d/0B0vT... 🔑 Key Concepts & Theorems Taylor Series Geometric Series (1/(1-w)) Radius of Convergence Analytic Functions Poles Partial Fraction Decomposition 🔖 Chapters 00:00 Definition Taylor Series 00:15 Theorem Taylor Series 00:35 Definition Radius of Convergence 00:59 Example 1: f(z) = 1/(2+z) around z=0 01:30 Example 2: f(z) = 1/(2+z) around z=1 04:23 Example 3: f(z) = -1/(2+z)^2 around z=1 05:42 Example 4: f(z) = (z-2)/((z+2)(z+3)) around z=0 07:03 Outro 🔔 Subscribe & Ask Questions If this video helped you understand the subject, please like and subscribe! Have a question about Taylor series or radius of convergence? Ask away in the comments below! I read every comment and will do my best to help you understand the concepts better. #TheMathCoach #ComplexAnalysis #TaylorSeries #PowerSeries #GeometricSeries #Mathematics #UniversityMath