• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding скачать в хорошем качестве

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 6 лет назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding в качестве 4k

У нас вы можете посмотреть бесплатно BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

https://arxiv.org/abs/1810.04805 Abstract: We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%. Authors: Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova

Comments
  • XLNet: Generalized Autoregressive Pretraining for Language Understanding 6 лет назад
    XLNet: Generalized Autoregressive Pretraining for Language Understanding
    Опубликовано: 6 лет назад
  • Прикладное машинное обучение 5. Context based models. BERT overview 5 лет назад
    Прикладное машинное обучение 5. Context based models. BERT overview
    Опубликовано: 5 лет назад
  • Synthesizer: Rethinking Self-Attention in Transformer Models (Paper Explained) 5 лет назад
    Synthesizer: Rethinking Self-Attention in Transformer Models (Paper Explained)
    Опубликовано: 5 лет назад
  • Лекция. BERT и его вариации. Masked Language Modelling 2 года назад
    Лекция. BERT и его вариации. Masked Language Modelling
    Опубликовано: 2 года назад
  • [GRPO Explained] DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models 10 месяцев назад
    [GRPO Explained] DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models
    Опубликовано: 10 месяцев назад
  • LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили! 7 дней назад
    LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!
    Опубликовано: 7 дней назад
  • Stanford CME295 Transformers & LLMs | Autumn 2025 | Lecture 1 - Transformer 1 месяц назад
    Stanford CME295 Transformers & LLMs | Autumn 2025 | Lecture 1 - Transformer
    Опубликовано: 1 месяц назад
  • LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры 1 год назад
    LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры
    Опубликовано: 1 год назад
  • REALM: Retrieval-Augmented Language Model Pre-Training (Paper Explained) 5 лет назад
    REALM: Retrieval-Augmented Language Model Pre-Training (Paper Explained)
    Опубликовано: 5 лет назад
  • DINO: Emerging Properties in Self-Supervised Vision Transformers (Facebook AI Research Explained) 4 года назад
    DINO: Emerging Properties in Self-Supervised Vision Transformers (Facebook AI Research Explained)
    Опубликовано: 4 года назад
  • Visualizing transformers and attention | Talk for TNG Big Tech Day '24 1 год назад
    Visualizing transformers and attention | Talk for TNG Big Tech Day '24
    Опубликовано: 1 год назад
  • Language Learning with BERT - TensorFlow and Deep Learning Singapore 7 лет назад
    Language Learning with BERT - TensorFlow and Deep Learning Singapore
    Опубликовано: 7 лет назад
  • Объяснение BERT: обучение, вывод, BERT против GPT/LLamA, тонкая настройка, токен [CLS] 2 года назад
    Объяснение BERT: обучение, вывод, BERT против GPT/LLamA, тонкая настройка, токен [CLS]
    Опубликовано: 2 года назад
  • Что такое встраивание слов? 9 месяцев назад
    Что такое встраивание слов?
    Опубликовано: 9 месяцев назад
  • Big Bird: Transformers for Longer Sequences (Paper Explained) 5 лет назад
    Big Bird: Transformers for Longer Sequences (Paper Explained)
    Опубликовано: 5 лет назад
  • CS480/680 Lecture 19: Attention and Transformer Networks 6 лет назад
    CS480/680 Lecture 19: Attention and Transformer Networks
    Опубликовано: 6 лет назад
  • Что такое модели-трансформеры и как они работают? 2 года назад
    Что такое модели-трансформеры и как они работают?
    Опубликовано: 2 года назад
  • [Classic] Deep Residual Learning for Image Recognition (Paper Explained) 5 лет назад
    [Classic] Deep Residual Learning for Image Recognition (Paper Explained)
    Опубликовано: 5 лет назад
  • Stanford CS25: V3 I Retrieval Augmented Language Models 1 год назад
    Stanford CS25: V3 I Retrieval Augmented Language Models
    Опубликовано: 1 год назад
  • NLP Demystified 15: Transformers From Scratch + Pre-training and Transfer Learning With BERT/GPT 3 года назад
    NLP Demystified 15: Transformers From Scratch + Pre-training and Transfer Learning With BERT/GPT
    Опубликовано: 3 года назад

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5