У нас вы можете посмотреть бесплатно Ai4 2020 'What's Next in Enterprise AI' Summit Full General Session или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
1:00PM ET - Satyam Priyadarshy - Valuable AI: The Need for Taming Compounded Disruption The application of Artificial Intelligence needs to generate value, continuously, comprehensively, and contextually, to enable transformation to tame compounded disruption. In this talk, I will discuss the paradigm shift needed to benefit with Valuable AI. 1:20PM ET - Diego Oppenheimer - MLOps and the Rise of Governance The days of artificial intelligence as theoretical science are over. For enterprises looking to build and deploy ML applications, there are multiple hurdles to overcome: maturity of the deployment process, industrialization of ML application development lifecycle, and the inclusion of ML governance for monitoring, reporting, and auditing. Algorithmia CEO Diego Oppenheimer will explore the disruption and collaboration between data science and AI engineering on the road to ML production and provide a roadmap for how to bring it in line with organizational governance. 1:40PM ET - Romy Hussain - Enterprise AI in the Time of COVID: Predicting, Optimizing, Preventing In this talk, I will discuss the ways in which advanced computational methods - from policy-driven multiagent systems to predictive epidemic modeling to reinforcement learning around various treatment interventions - can drive core business decision-making around critical questions of workforce safety, population health management, and the future of in-person work. The Johns Hopkins suite of predictive models has been used at the corporate, municipal, and state levels to model outcome scenarios around policy interventions like returning to in-person work, public space re-openings, and masking mandates. I will discuss the ramifications of these models on the enterprise's ability to make sound business decisions within the organization's risk tolerance threshold.