У нас вы можете посмотреть бесплатно Laurenz Holcik – Genomic GC bias correction improves metagenomic abundance estimation | MVIF45 S05 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Title of the presentation: Genomic GC bias correction improves species abundance estimation from metagenomic data Speaker: Laurenz Holcik More info on this event: https://www.microbiome-vif.org/en-US/... Join us at the next meeting (free registration!): https://www.microbiome-vif.org/ And you can join us on Twitter: / microbiomevif Abstract of this talk: Metagenomic sequencing measures the species composition of microbial communities, and has revealed the crucial role of microbiomes in the etiology of a range of diseases such as colorectal cancer. Quantitative comparisons of microbial communities are, however, affected by GC-content dependent biases. Here, we present GuaCAMOLE, a computational method to detect and remove GC bias from meta-genomic sequencing data. The algorithm relies on comparisons between individual species in a single sample to estimates the sequencing efficiency at levels of GC content, and outputs unbiased species abundances. GuaCAMOLE thus works regardless of the specific amount or direction of GC-bias present in the data and does not rely on calibration experiments or multiple samples. Applying our algorithm to 3435 gut microbiomes of colorectal cancer patients from 33 individual studies reveals that the type and severity of GC bias varies considerably between studies. In many studies we observe a clear bias against GC-poor species in the abundances reported by existing methods. GuaCAMOLE successfully removes this bias and corrects the abundance of clinically relevant GC-poor species such as F. nucleatum (28% GC) by up to a factor of two. GuaCAMOLE thus contributes to a better quantitative understanding of microbial communities by improving the accuracy and comparability of species abundances across experimental setups.