У нас вы можете посмотреть бесплатно Iceberg for Agents: Elevating Lakehouse Data Into AI-Ready Context | Open Lakehouse & AI Meetup или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
This was one of four talks from the Open Lakehouse and AI Berlin Meetup on January 27, 2026. Title: Iceberg for Agents: Elevating Lakehouse Data Into AI-Ready Context Speaker: Andrew Madson, Head of Developer Relations @ Fivetran Abstract: AI agents fail in production because even though they're stuffed with data, they're starved for context. Better LLM models aren’t the problem. The bottleneck is the data stack: fragmented silos, inconsistent definitions, and logic hidden in tribal knowledge. Agents need structured, reliable, and interpretable context—not just data access. In this session, we'll show how Apache Iceberg becomes the backbone of AI-ready pipelines. You’ll learn how to elevate your Iceberg implementation from a storage format to a live context layer that powers structured retrieval-augmented generation (RAG), schema-aware agents, and autonomous reasoning grounded in truth. What we’ll cover: Iceberg Foundations for AI - from ACID to Time Travel From Rows to Relationships - The role of the semantic layer Structured RAG in Practice - Fully open source The session includes a live demo of a fully open-source Structured RAG stack built on Apache Iceberg, featuring semantic query translation, hybrid retrieval, and governed agent reasoning. Expect architecture diagrams, real code, and practical guidance. _____________________________________ Learn more about the OSA Community here: osacom.io