У нас вы можете посмотреть бесплатно Restricted Boltzmann Machines for AI Applications - How AI Predicts Your Preferences или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Discover the fascinating world of Restricted Boltzmann Machines (RBM) in this tutorial! Discover the fascinating world of Restricted Boltzmann Machines (RBM) in this tutorial! Learn how RBMs simplify the complex architecture of full Boltzmann Machines, making them highly effective for applications like recommender systems. Explore how RBMs are trained to identify features and predict preferences, using a movie recommender system as a practical example. By the end, you'll understand the essence of RBMs and their application in AI-driven predictions. Course Link HERE: https://community.superdatascience.co... You can also find us here: Website: https://www.superdatascience.com/ Facebook: / superdatascience Twitter: / superdatasci Linkedin: / superdatascience Contact us at: [email protected] From this video, you will learn: What a Restricted Boltzmann Machine (RBM) is and how it simplifies the architecture of a full Boltzmann Machine. Why RBMs are ideal for practical applications, such as recommender systems, compared to full Boltzmann Machines. How RBMs are trained using techniques like contrastive divergence to identify patterns in data. How RBMs identify and model features like genres, actors, and directors, even without labeled data. The process of training and applying RBMs, including how they predict user preferences based on learned features. How RBMs reconstruct input data during testing and use it for predictions in practical scenarios. The application of RBMs in creating personalized recommendations, such as predicting user preferences for movies. Chapters: 00:00 Introduction 00:30 Boltzmann Machine Challenges 00:59 RBM Architecture 01:28 Practical Example 02:24 Training RBM 03:00 Identifying Features 05:10 Modeling Preferences 08:12 RBM in Action 09:12 Recommending Movies 16:56 Conclusion Hashtags: #MachineLearning #AI #DeepLearning #RestrictedBoltzmannMachine #RBM #AIRecommender #AIExplained #AIApplications #MovieRecommendations #BoltzmannMachine #ArtificialIntelligence #TechTutorial #LearnAI #RecommenderSystem #AITraining