У нас вы можете посмотреть бесплатно How to Compute Surface Integrals in Vector Fields | Flux Integrals, Parametric Surfaces & Examples или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Hello everyone, and welcome back to Math and Engineering Made Easy! In today’s lesson, we complete our discussion of surface integrals — this time working with vector fields. Last time, we evaluated surface integrals over scalar fields. Today, we extend that idea to compute flux through a surface using vector calculus. 🌟 What You Will Learn Today ✔ How to project a vector field onto a surface’s normal direction ✔ Using ru × rv to get the normal vector to a parametrized surface ✔ Why |ru × rv| represents the area scaling factor ✔ How to compute the surface integral ∬ 𝐹⋅𝑛 𝑑𝑆 𝑆 ✔ The meaning of flux in vector fields ✔ Step-by-step examples including: A surface defined implicitly (a downward-opening paraboloid) A surface already given in parametric form ✔ Parameterization, partial derivatives, cross products, and dot products all tied together intuitively This lesson contains two full worked examples, including the full evaluation of 𝐹 = 𝑦𝑖 + 𝑥𝑗 + 𝑧𝑘 over a bounded paraboloid, and a more advanced example with a provided parameterization. If you have any questions, feel free to leave them in the comments — I’m always happy to help. Thank you for watching, and see you in the next video!