У нас вы можете посмотреть бесплатно AP Calculus BC: A Tricky Limit Problem Solved by Applying L’Hôpital’s Rule | MOA Lesson 20 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Hey math fans, 🎓 Welcome to Math Olympiad Academy (MOA) – your trusted space for advanced mathematical reasoning, systematic problem-solving, and international-level enrichment. In Lesson 20, we present a rigorous, step-by-step solution to a limit problem that looks tricky to many students , but isn’t, when you know the appropriate method. We aim to determine the limit as x tends to zero of: f of x equals the quantity e raised to the power 3x, minus 3 times x, minus 1, all over x squared. The student’s challenge is clear: 👉 To determine the limit of f(x) as x approaches zero by applying L’Hôpital’s Rule. At first glance, direct substitution fails—but through careful explanation and a step-by-step approach, this problem becomes a classic test of mastery in applying L’Hôpital’s Rule. It is a standard exercise in AP Calculus BC, JEE Main, and first-year university calculus courses at institutions such as Harvard, MIT, Cambridge, and IIT. In this lesson, we guide you through a structured, step-by-step resolution: 🟢 Recognize the 0/0 indeterminate form and verify the conditions for L’Hôpital’s Rule 🟢 Apply the rule once—only to find another 0/0 form 🟢 Apply the rule a second time, confirming the denominator’s derivative is nonzero near zero 🟢 Verify the result numerically using direct substitution at x = 10⁻⁶ 🟢 Compute the relative error to confirm analytical precision This lesson strengthens essential skills for: 🔵 Confidently handling repeated applications of L’Hôpital’s Rule 🔵 Verifying analytical results with high-precision numerical checks 🔵 Understanding why two derivatives are necessary in certain exponential limits 🔵 Building logical completeness in limit evaluation—no skipped steps, no hand-waving 🔵 Preparing for AP Calculus, JEE Main, university entrance exams, and competitive problem-solving platforms By the end of this video, you will: 🟣 Solve double-application L’Hôpital problems with full rigor 🟣 Distinguish between “appears to be 0” and “actually tends to a finite value” 🟣 Use numerical verification to validate theoretical results—a key skill in physics, engineering, and applied mathematics 🟣 Articulate why the rule applies twice—not just how 🟣 Strengthen your foundation for more advanced topics: Taylor series, asymptotic, and error analysis 📌 Subscribe to Math Olympiad Academy for more lessons covering: 🟢 Rigorous calculus techniques used at Harvard, MIT, Cambridge, and IIT 🟢 Step-by-step solutions to international exam problems (JEE, AP, IB, Olympiads) 🟢 Systematic algebra and analysis methods—not tricks, but deep understanding 🟢 Verification strategies that bridge theory and computation Your likes, comments, and subscriptions empower us to keep creating high-precision, learner-centered content for students worldwide. The Math Olympiad Academy Team Tags: #LHopitalsRule #DoubleLHospital #LimitProblems #APCalculusBC #JEEAdvanced2026 #JEE2026 #IITMath #HarvardCalculus #MITMath #CambridgeMath #UniversityCalculus #ExponentialLimits #IndeterminateForms #ZeroOverZero #MathOlympiadAcademy #MOALesson20 #RigorousCalculus #AnalyticalVerification #RelativeError #StepByStepMath #AdvancedHighSchoolMath #CompetitiveMathematics #SystematicProblemSolving