У нас вы можете посмотреть бесплатно On Turán Numbers of hyper Graphs - Maya Sankar или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Computer Science/Discrete Mathematics Seminar II 10:30am|Simonyi 101 and Remote Access Topic: On Turán Numbers of hyper Graphs Speaker: Maya Sankar Affiliation: Institute for Advanced Study Date: December 9, 2025 The study of Turán numbers of graphs and hypergraphs is a rich problem in extremal combinatorics. The Turán problem asks, given a fixed forbidden (hyper)graph F, what is the maximum number of edges in an F-free (hyper)graph in terms of the number of vertices? In the first half of this talk, I hope to survey some fundamental results in this area, including the techniques of Lagrangians and supersaturation. In the second half of this talk, I will talk about a recent result of mine regardinf the Turán numbers of long tight cycles, a class of hypergraphs generalizing cycles. One key ingredient in this framework, which I hope to prove in full, is a hypergraph analogue of the statement that a graph has no odd closed walks if and only if it is bipartite. More precisely, for various classes C of "cycle-like" r-uniform hypergraphs, we equivalently characterize C-free hypergraphs as those admitting a certain type of coloring of (r-1)-tuples of vertices. This provides a common generalization of several results in uniformity r=3 due to Kamčev-Letzter-Pokrovskiy and Balogh-Luo, and provides a framework with which one could understand the Turán numbers of a much larger family of "cycle like" hypergraphs.