У нас вы можете посмотреть бесплатно Robust anomaly detection for real user monitoring data - Velocity 2016, Santa Clara, CA или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Code: https://github.com/linkedin/luminol For the past year, LinkedIn has been running and iteratively improving Luminol, its anomaly detection system that identifies anomalies in real user monitoring (RUM) data for LinkedIn pages and apps. Ritesh Maheshwari and Yang Yang offer an overview of Luminol, focusing on how to build a low-cost end-to-end system that can leverage any algorithm, and explain lessons learned and best practices that will be useful to any engineering or operations team. LinkedIn will be open sourcing its Python library for anomaly detection and correlation during the talk. Topics include: Use cases How to avoid an alert black hole Data processing Overview of Luminol Root cause detection Alerting Success stories