У нас вы можете посмотреть бесплатно Declarative Pipelines: What’s Next for Apache Spark или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Early this year, Spark Declarative Pipelines (SDP) was announced, which has made it dramatically easier to build robust Spark pipelines using a framework that abstracts away orchestration and complexity. The SDP declarative framework extends beyond individual queries to enable a mix of batch and streaming pipelines, keeping multiple datasets fresh. In this session, Sandy Ryza (Databricks) shares a broader vision for the future of Spark Declarative Pipelines — one that opens the door to a new level of openness, standardization, and community momentum. Key takeaways: ✅ Core concepts behind Spark Declarative Pipelines; ✅ Where the architecture is headed; and ✅ What this shift means for both existing users and Spark engineers building procedural code. This talk was part of the “Open Lakehouse + AI Mini Summit,” hosted at the Databricks Mountain View office on November 13, 2025. 00:00 – Intro 02:00 – What “declarative” means; what is a pipeline 04:30 – Why non‑declarative pipelines are hard (ordering, parallelism) 08:00 – Errors, retries, and discrete vs continuous execution 11:30 – Orchestrators (Airflow) pros/cons and limits 14:30 – Introducing Spark Declarative Pipelines (SDP) 17:30 – Core APIs: streaming tables, materialized views, SQL/Python, runner 22:30 – Modes, dependency inference, validation; SDP vs dbt vs Airflow; availability