Русские видео

Сейчас в тренде

Иностранные видео


Скачать с ютуб Stéphane Mallat - High Dimensional Classification with Invariant Deep Networks в хорошем качестве

Stéphane Mallat - High Dimensional Classification with Invariant Deep Networks 7 лет назад


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Stéphane Mallat - High Dimensional Classification with Invariant Deep Networks

2013 ISIT Plenary Lecture High Dimensional Classification with Invariant Deep Networks Stéphane Mallat École Normale Supérieure Abstract: Intra-class variability is the curse of most high-dimensional classification problems. Fighting it means finding discriminative invariants. Classical mathematical invariants are either non-stable to signal variabilities or loose too much information. Surprisingly, non-linear deep neural networks became "hot" again, by accumulating experimental successes over a wide range of applications for speech, images and biological data. We show that such architectures build hierarchical invariants over cascades of Lie groups, which reduce signal variabilities while preserving discrimination. Invariants are computed with filters corresponding to wavelets defined on each group. They are learned from unsupervised data with sparse representation strategies, that remain to be understood. Applications will be discussed and shown on images and sounds. Biography: Stéphane Mallat received the Ph.D. degree from the University of Pennsylvania, in 1988. He was then Professor at the Courant Institue of Mathematical Sciences until 1995, Professor at Ecole Polytechnique in Paris, CEO of a start-up semi-conductor company, and is now Professor at École Normale Supérieure in Paris. Stéphane Mallat's research interests include signal processing, harmonic analysis and learning.

Comments