У нас вы можете посмотреть бесплатно Pedro J. Saenz: Walking Droplets and Galloping Bubbles или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Blending experiments, simulations and theory, Pedro J. Saenz of the University of North Carolina discussed two different problems that are moti-vated by fundamental questions in physics and engineering. In the first part, Saenz presented a classical wave-particle analog of Anderson localization using walking droplets, or “walkers,” which self-propel across a vibrating fluid bath via a resonant interaction with their guiding wave field. These droplets push the boundaries of classical mechanics by exhibiting behaviors previously thought to be exclusive to the quantum realm. Investigating the erratic motion of walkers over submerged random topographies, we demonstrate the emergence of localized statistics analogous to those of quantum particles. Analysis of walker trajectories reveals a suppression of diffusion when the guiding wave field extends over the disordered topography, driven by a wave-mediated resonant coupling that generates an attractive wave potential. This hydrodynamic quantum analog illustrates how a classical particle may localize like a wave. The second part introduces a new symmetry-breaking mechanism that enables bubbles to “gallop” along horizontal surfaces in a vertically vibrated fluid chamber, propelled by coupling between shape oscillation modes. These active bubbles exhibit diverse trajectory regimes – rectilinear, orbital, and run-and-tumble – tunable by external forcing. By leveraging periodic body deformations and inertial forces, galloping bubbles achieve self-propulsion without external forcing in their direction of motion. Proof-of-concept demonstrations illustrate the potential of galloping locomotion for bubble manipulation, transport and sorting, navigation through complex fluid networks, and surface cleaning.