У нас вы можете посмотреть бесплатно Evolving to prediction in fraud detection или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this conversation, Matt Brady and Steve Lenderman discuss the evolution of fraud detection technology, the agility of fraudsters, and the importance of understanding the criminal mindset. They explore the shift from traditional rule-based systems to machine learning models, the challenges of real-time fraud detection, and the critical role of data in combating fraud. The discussion also highlights the growing concern of synthetic identity fraud and the need for collaboration across departments to enhance fraud prevention efforts. Steve shares insights on the future of fraud detection, emphasising the inevitability of increasing fraud and the necessity for organisations to adapt and protect themselves. Key Takeaways • Fraud detection is a constantly evolving chess game. • Technology has made it easier for fraudsters to operate. • Understanding the criminal mindset is crucial for fraud prevention. • Synthetic identity fraud is a significant and growing issue. • Real-time monitoring is essential, but still reactive. • Data quality is critical for effective fraud detection. • Collaboration between departments enhances fraud prevention efforts. • The cost of fraud is becoming an accepted business risk. • Organisations must adapt to the changing landscape of fraud. • The future of fraud detection will rely on predictive analytics. Chapters 00:00 Introduction to Fraud Detection Technology 02:29 The Evolution of Fraud and Technology 05:23 Agility in Fraud Tactics 09:36 Understanding the Fraud Triangle 12:11 From Rules to Machine Learning 17:35 Real-Time Fraud Detection 21:18 The Importance of Data Quality 23:51 Understanding Fusion Centres and Data Sharing 25:14 The Challenge of Consortium Data 26:21 People vs. Technology: The Data Sharing Dilemma 27:27 Building Relationships Across Departments 29:47 Navigating Legal Challenges in Fraud Prevention 31:49 The Rise of Synthetic Identity Fraud 34:38 Fighting Back with Data 37:44 Accepting the Cost of Fraud 41:17 The Future of Fraud: Predictions and Insights #FraudDetection #Technology #AI #SyntheticIdentity #RealTimeMonitoring #DataSharing #FraudPrevention #MachineLearning #Agility #Cybersecurity