Русские видео

Сейчас в тренде

Иностранные видео


Скачать с ютуб [POPL 2021] On the Semantic Expressiveness of Recursive Types (full) в хорошем качестве

[POPL 2021] On the Semantic Expressiveness of Recursive Types (full) 3 года назад


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса savevideohd.ru



[POPL 2021] On the Semantic Expressiveness of Recursive Types (full)

Marco Patrignani (Stanford University, USA / CISPA, Germany) Eric Mark Martin (Stanford) Dominique Devriese (Vrije Universiteit Brussel) Paper: https://dl.acm.org/doi/pdf/10.1145/34... Recursive types extend the simply-typed lambda calculus (STLC) with the additional expressive power to enable diverging computation and to encode recursive data-types (e.g., lists). Two formulations of recursive types exist: iso-recursive and equi-recursive. The relative advantages of iso- and equi-recursion are well-studied when it comes to their impact on type-inference. However, the relative semantic expressiveness of the two formulations remains unclear so far. This paper studies the semantic expressiveness of STLC with iso- and equi-recursive types, proving that these formulations are equally expressive. In fact, we prove that they are both as expressive as STLC with only term-level recursion. We phrase these equi-expressiveness results in terms of full abstraction of three canonical compilers between these three languages (STLC with iso-, with equi-recursive types and with term-level recursion). Our choice of languages allows us to study expressiveness when interacting over both a simply-typed and a recursively-typed interface. The three proofs all rely on a typed version of a proof technique called approximate backtranslation. Together, our results show that there is no difference in semantic expressiveness between STLCs with iso- and equi-recursive types. In this paper, we focus on a simply-typed setting but we believe our results scale to more powerful type systems like System F.

Comments