У нас вы можете посмотреть бесплатно Scaling Enterprise AI with Hybrid Search & Tensors on Vespa.AI или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Are you struggling to scale your AI applications, especially RAG chatbots? Join us for an in-depth exploration of enterprise-level retrieval solutions designed to overcome the complexities of multi-modal data, ambiguous user intent, and long reasoning chains. Discover how Desperia's innovative tensor database technology is revolutionizing how we store, query, and leverage institutional knowledge for precise and efficient AI. This was a recording of a AICamp London meetup on the 1st October 2025. The common pitfalls of scaling RAG chatbots. Handling multi-modal data (text, images, charts) effectively. Achieving precise retrieval for complex user intents. The power of tensor databases and multi-vector storage. Practical demonstrations in life sciences and e-commerce. The nuances of semantic search, dense vs. sparse vectors, and hybrid approaches. Strategies for cost-efficient AI deployment. This session is perfect for AI engineers, data scientists, product managers, and anyone looking to build sophisticated and performant AI solutions for their enterprise. *Tags:* AI, Enterprise AI, RAG, Retrieval Augmented Generation, Tensor Database, Vector Database, Semantic Search, Multi-modal AI, LLM, Large Language Models, Data Science, Machine Learning, AI Solutions, Enterprise Search, AI Challenges, Scalability, Desperia, Flexi, AI Demos, Hybrid Search, Sparse Vectors, Dense Vectors, Medical AI, E-commerce AI, Late Interaction, Tensor Math, Rank Profiles Timestamps: 0:00 - Introduction to Desperia and Enterprise Retrieval 0:49 - Challenges in Building and Scaling AI Applications 1:56 - The Four Key Problems in Industrial AI Deployment 3:41 - Handling Unstructured Data with Embeddings and Context Knowledge 4:48 - Key Challenges in Enterprise AI: Multi-modality, Precision, Enterprise Systems, and Cost 5:54 - Real-World Applications: Medical and E-commerce Retrieval 6:44 - Demo: Complex PDF and Medical Document Retrieval with Co-Valley 9:32 - Interactive Demo and Q&A: "Mechanism of Action" and Drug Comparison 12:10 - The Fundamentals of Semantic Search with Dense Vectors 14:21 - Advanced Retrieval: Late Interaction and Sparse Vectors 20:16 - Integrating Data and Preferences: Sparse Tensors and Re-ranking 24:33 - Lexical Search and Ranking Algorithms 26:58 - Building a Retrieval Implementation: Combining Methods and Tensor Math 28:44 - Rank Profiles and Training Re-rankers for Precision 29:49 - Evaluating Retrieval Systems: Metrics, Judgment Lists, and Customization 34:13 - The Role of Knowledge Graphs and Contextual Awareness 39:44 - Context-Aware Knowledge Bases and Multi-Modal Retrieval 44:08 - Normalization, Ranking, and Evaluation Strategies 46:40 - Vector Databases and Building an AI Pipeline 48:23 - Product Offerings and Future Directions Speakers: Radu Gheorghe (Vespa ai) | Harini Gopalakrishnan (Vespa ai) Co-hosts: @drdavidtang , Tibor Oormosi, Lorentz Young