• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Richard Sutton – Father of RL thinks LLMs are a dead end скачать в хорошем качестве

Richard Sutton – Father of RL thinks LLMs are a dead end 3 недели назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Richard Sutton – Father of RL thinks LLMs are a dead end
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Richard Sutton – Father of RL thinks LLMs are a dead end в качестве 4k

У нас вы можете посмотреть бесплатно Richard Sutton – Father of RL thinks LLMs are a dead end или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Richard Sutton – Father of RL thinks LLMs are a dead end в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Richard Sutton – Father of RL thinks LLMs are a dead end

Richard Sutton is the father of reinforcement learning, winner of the 2024 Turing Award, and author of The Bitter Lesson. And he thinks LLMs are a dead end. After interviewing him, my steel man of Richard’s position is this: LLMs aren’t capable of learning on-the-job, so no matter how much we scale, we’ll need some new architecture to enable continual learning. And once we have it, we won’t need a special training phase — the agent will just learn on-the-fly, like all humans, and indeed, like all animals. This new paradigm will render our current approach with LLMs obsolete. In our interview, I did my best to represent the view that LLMs might function as the foundation on which experiential learning can happen… Some sparks flew. A big thanks to the Alberta Machine Intelligence Institute for inviting me up to Edmonton and for letting me use their studio and equipment. Enjoy! 𝐄𝐏𝐈𝐒𝐎𝐃𝐄 𝐋𝐈𝐍𝐊𝐒 Transcript: https://www.dwarkesh.com/p/richard-su... Apple Podcasts: https://podcasts.apple.com/us/podcast... Spotify: https://open.spotify.com/episode/3zAX... 𝐒𝐏𝐎𝐍𝐒𝐎𝐑𝐒 Labelbox makes it possible to train AI agents in hyperrealistic RL environments. With an experienced team of applied researchers and a massive network of subject-matter experts, Labelbox ensures your training reflects important, real-world nuance. Turn your demo projects into working systems at https://labelbox.com/dwarkesh Gemini Deep Research is designed for thorough exploration of hard topics. For this episode, it helped me trace reinforcement learning from early policy gradients up to current-day methods, combining clear explanations with curated examples. Try it out yourself at https://gemini.google.com/ Hudson River Trading doesn’t silo their teams. Instead, HRT researchers openly trade ideas and share strategy code in a mono-repo. This means you’re able to learn at incredible speed and your contributions have impact across the entire firm. Find open roles at https://hudsonrivertrading.com/dwarkesh To sponsor a future episode, visit https://dwarkesh.com/advertise 𝐓𝐈𝐌𝐄𝐒𝐓𝐀𝐌𝐏𝐒 00:00:00 – Are LLMs a dead end? 00:13:51 – Do humans do imitation learning? 00:23:57 – The Era of Experience 00:34:25 – Current architectures generalize poorly out of distribution 00:42:17 – Surprises in the AI field 00:47:28 – Will The Bitter Lesson still apply after AGI? 00:54:35 – Succession to AI

Comments

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5