У нас вы можете посмотреть бесплатно ML-Based Industrial Fruit Sorting Machine | 98.7% Accurate DenseNet Model + IR Sensor + Romeo V2 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
This project presents a prototype AI-powered fruit sorting machine that automatically detects and classifies fruits (such as oranges, apples, and more) as Normal or Damaged using a DenseNet121 deep learning model integrated with a Romeo V2 microcontroller. An IR proximity sensor detects when a fruit arrives under the camera and automatically stops the conveyor belt. The AI system then: 1️⃣ Captures the fruit image in real time 2️⃣ Runs it through a preloaded DenseNet121 model trained on 13,752 labeled images 3️⃣ Achieves a 98.7% classification accuracy 4️⃣ Sends a command to the Romeo V2 to move the servo arm left or right, sorting the fruit into its correct bin (Damaged / Normal) 5️⃣ Restarts the conveyor to continue the process 💡 This prototype demonstrates how AI, sensors, and robotics can be combined to build smart, efficient, and automated sorting systems. With further development, this concept can be scaled to industrial applications using high-speed conveyors, advanced actuators, and real-time embedded processors for faster and larger-scale fruit handling. 🔧 Hardware Used: Romeo V2 (Arduino-compatible controller) IR Proximity Sensor (for fruit detection) DC Motor (for conveyor movement) Servo Motor (for sorting mechanism) USB Camera (for live image capture) External Motor Power Supply 🧠 Software Stack: TensorFlow / Keras (DenseNet121 model) OpenCV (computer vision) Python (real-time control application) Arduino C++ (motor, servo, and sensor control) 📁 System Features: ✅ 98.7% accurate DenseNet121 model ✅ Trained on 13,752 fruit images ✅ Real-time AI-based classification (Normal / Damaged) ✅ Automatic conveyor stop and resume system ✅ Servo-actuated sorting bins ✅ CSV logging of predictions and confidence levels ✅ Prototype version — adaptable for industrial-grade fruit sorting 🌾 Applications: Automated fruit grading and packaging lines Smart agriculture and post-harvest automation Food quality inspection systems AI + Robotics research and educational projects 🎬 Watch how this prototype integrates AI, computer vision, and embedded control to create a smart fruit sorting machine , a concept that can evolve into large-scale, high-speed industrial automation.