• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Hadi Abdi Khojasteh - Distillation Unleashed: Domain Knowledge Transfer with Compact Neural Networks скачать в хорошем качестве

Hadi Abdi Khojasteh - Distillation Unleashed: Domain Knowledge Transfer with Compact Neural Networks 2 года назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Hadi Abdi Khojasteh - Distillation Unleashed: Domain Knowledge Transfer with Compact Neural Networks
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Hadi Abdi Khojasteh - Distillation Unleashed: Domain Knowledge Transfer with Compact Neural Networks в качестве 4k

У нас вы можете посмотреть бесплатно Hadi Abdi Khojasteh - Distillation Unleashed: Domain Knowledge Transfer with Compact Neural Networks или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Hadi Abdi Khojasteh - Distillation Unleashed: Domain Knowledge Transfer with Compact Neural Networks в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Hadi Abdi Khojasteh - Distillation Unleashed: Domain Knowledge Transfer with Compact Neural Networks

This talk explores distillation learning, a powerful technique for compressing and transferring knowledge from larger neural networks to smaller, more efficient ones. It delves into its core components and various applications such as model compression and transfer learning. The speaker aims to simplify the topic for all audiences and provides implementation, demonstrating how to apply distillation learning in real scenarios. Attendees will gain insights into developing efficient neural networks by reviewing the various examples of the complex model. The material will be accessible online for convenient access and understanding. As the field of artificial intelligence continues to advance, the demand for more efficient and compact neural network models has become increasingly vital. The ability to compress and transfer knowledge from larger, complex models to smaller, more efficient models has emerged as a powerful solution. In this talk, we aim to shed light on the significance of distillation learning and its applications across various domains. In an era where data sizes and computational requirements are escalating, distillation learning provides a compelling solution to address the challenges posed by these factors. By utilizing a teacher-student framework, this approach facilitates the transfer of knowledge from a larger, well-performing teacher model to a smaller student model. The student model is trained to mimic the behaviour and output of the teacher model, thereby inheriting its expertise. This process enables the creation of compact models that are not only efficient in terms of memory and inference speed but also capable of performing tasks with comparable proficiency. Distillation learning represents a breakthrough in model compression and transfer learning, revolutionizing the field of artificial intelligence and novel machine learning utilising deep neural networks. In this talk, we will provide a comprehensive overview of distillation learning, covering its core components. We will explore the definition and motivation behind, highlighting the role of the teacher model in guiding the student model and the objective of the student model to replicate the teacher model's output. Additionally, we will discuss the diverse applications, including model compression, transfer learning, ensemble learning, multi-task learning, and language models. We will also delve into different types of this learning approach, such as model distillation, knowledge distillation, multi-task distillation, and transfer distillation. This talk facilitates knowledge exchange and inspires the development of efficient neural networks. The speaker simplifies the topic, making it accessible to all audiences. Simple practical implementation in TensorFlow will be demonstrated, showcasing how attendees can apply this technique in real scenarios. No expertise in complex models is required, and the material will be shared online for convenient access and comprehension. Bio: Hadi Abdi Khojasteh Hadi is an R&D senior machine learning engineer at the Deltatre group, where he is an integral member of the innovation lab and a fellow at the Sport Experiences unit, based in Czechia and Italy. With a solid academic background, Hadi is a former lecturer at the Institute for Advanced Studies in Basic Sciences (IASBS) in Iran and as a researcher at the Institute of Formal and Applied Linguistics (ÚFAL) at Charles University in Prague. Throughout his career, he has actively participated in numerous industrial projects, collaborating closely with renowned experts in the fields of CV/NLP/HLT/CL/ML/DL. His research focuses on multimodal learning inspired by neural models that are both linguistically motivated and tailored to language and vision, visual reasoning and deep learning. His main research interests are Machine Learning, Deep Learning, Computer Vision, Multimodal Learning and Visual Reasoning while he is experienced in a wide variety of international projects on cutting-edge technologies. === www.pydata.org PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R. PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases.

Comments
  • Alyona Galyeva - Data Contracts in action powered by Python open source ecosystem | PDAMS 2023 2 года назад
    Alyona Galyeva - Data Contracts in action powered by Python open source ecosystem | PDAMS 2023
    Опубликовано: 2 года назад
  • Chronos: Time series forecasting in the age of pretrained models 10 месяцев назад
    Chronos: Time series forecasting in the age of pretrained models
    Опубликовано: 10 месяцев назад
  • This is How AI Works in Wall Street Banks 22 часа назад
    This is How AI Works in Wall Street Banks
    Опубликовано: 22 часа назад
  • PyData Amsterdam 2023 - Opening Notes 2 года назад
    PyData Amsterdam 2023 - Opening Notes
    Опубликовано: 2 года назад
  • Jonathan Shi-Bridging Interactive Data Science and Big Data with Hybrid Execution-PyData Global 2025 11 часов назад
    Jonathan Shi-Bridging Interactive Data Science and Big Data with Hybrid Execution-PyData Global 2025
    Опубликовано: 11 часов назад
  • BioTuring Webinar: A Practical Guide to UMAP by its author John Healy 4 года назад
    BioTuring Webinar: A Practical Guide to UMAP by its author John Healy
    Опубликовано: 4 года назад
  • Sondaż Rosjan na ulicach o podsumowaniu roku 8 часов назад
    Sondaż Rosjan na ulicach o podsumowaniu roku
    Опубликовано: 8 часов назад
  • Rob de Wit-Liezenga - Scaling Python to thousands of nodes with Ray - PyData Eindhoven 2025 1 день назад
    Rob de Wit-Liezenga - Scaling Python to thousands of nodes with Ray - PyData Eindhoven 2025
    Опубликовано: 1 день назад
  • Новое обновление Gemini + NotebookLM — это просто БЕЗУМИЕ! 7 часов назад
    Новое обновление Gemini + NotebookLM — это просто БЕЗУМИЕ!
    Опубликовано: 7 часов назад
  • Laura Summers - Ok, Doomer | PyData Amsterdam 2023 2 года назад
    Laura Summers - Ok, Doomer | PyData Amsterdam 2023
    Опубликовано: 2 года назад
  • Scientists Found Evidence We're Living in One of Infinite Parallel Universes 1 час назад
    Scientists Found Evidence We're Living in One of Infinite Parallel Universes
    Опубликовано: 1 час назад
  • Jaroslav Křivánek | SIGGRAPH 2019 6 лет назад
    Jaroslav Křivánek | SIGGRAPH 2019
    Опубликовано: 6 лет назад
  • Jon Leiñena Otamendi - CompactifAI: Quantum-Inspired AI Model Compression - PyData Eindhoven 2025 1 день назад
    Jon Leiñena Otamendi - CompactifAI: Quantum-Inspired AI Model Compression - PyData Eindhoven 2025
    Опубликовано: 1 день назад
  • PyData Amsterdam 2023
    PyData Amsterdam 2023
    Опубликовано:
  • AI Driven Circuit Design and Verification Automation | APRIL AI Hub Second Annual Summit 2 недели назад
    AI Driven Circuit Design and Verification Automation | APRIL AI Hub Second Annual Summit
    Опубликовано: 2 недели назад
  • How the Human Network Makes Biometrics Safe: Threshold Cryptography Explained 11 дней назад
    How the Human Network Makes Biometrics Safe: Threshold Cryptography Explained
    Опубликовано: 11 дней назад
  • MLBBQ: “Are Transformers Effective for Time Series Forecasting?” by Joanne Wardell 1 год назад
    MLBBQ: “Are Transformers Effective for Time Series Forecasting?” by Joanne Wardell
    Опубликовано: 1 год назад
  • Ali Kohan - From €1M License to In-House Success: How We Built a Real-Time...- PyData Eindhoven 2025 1 день назад
    Ali Kohan - From €1M License to In-House Success: How We Built a Real-Time...- PyData Eindhoven 2025
    Опубликовано: 1 день назад
  • Визуализация электрощита на 12 модулей в программе Visio с помощью фигур TimVisio 2 часа назад
    Визуализация электрощита на 12 модулей в программе Visio с помощью фигур TimVisio
    Опубликовано: 2 часа назад
  • Jaroslav Bezdek - Planning Hockey Careers With Python - PyData Eindhoven 2025 1 день назад
    Jaroslav Bezdek - Planning Hockey Careers With Python - PyData Eindhoven 2025
    Опубликовано: 1 день назад

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5