У нас вы можете посмотреть бесплатно Harmonization of Major Scales или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In the previous video, which covered the foundations of harmony, we saw that the spectrum of the note C4 produced by a ukulele contains the notes of the C, F, and G major chords, corresponding to the tonic, subdominant, and dominant degrees, respectively. These chords are formed by adding notes at intervals of a third to the notes C, F, and G, the roots of these chords. Since these chords contain all the notes of the C major scale, they constitute the primary chords of the C major key. In this video, we will add notes at intervals of a third to each of the notes of the scale to complete a set of chords that we will call the harmonic field of the key. This field allows us to enrich the harmonization of melodies in this key. To introduce concepts that are extremely useful for understanding harmony, the chords contained in the harmonic field are associated by groups with three degrees of the scale: tonic, subdominant, and dominant. To facilitate identification and drawing conclusions, these groups are identified by colors. As an example of the application of the harmonic field, we will enrich the tonality of the melody “Twinkle, Twinkle, Little Star.” The concepts introduced in this video are applicable to the rest of the major scales. The content of this video will provide you with a preliminary idea that, in conjunction with the content of subsequent videos, will allow you to answer the following questions: How does harmony work? How do you reharmonize melodies? Link to the video "Foundations of Harmony": • Foundations of Harmony Approximation of the critical bandwidth graph, (f2 - f1) versus note frequency: CBW = 90 + 0,09*f, for f greater than 0 and less or equal to 1500 CBW = 225 + 0.143*(f-1500), for f greater than 1500 and less or equal to 3000 CBW = 440 + 0.175*(f-3000), for f greater than 3000 and less or equal to 5000 Other links of interest: Link to the article "La percepción acústica: Física de la audición", by J. M. Merino y L. Muñoz-Repiso: https://dialnet.unirioja.es/descarga/... Link to the article Tonal Consonance and Critical Bandwidth , by Plomp and Levelt: https://www.mpi.nl/world/materials/pu... Timecodes 0:00 - Start 0:30 - Primary chords. 1:13 - Hamonic field. 8:27 - Melody reharmonization. 10:25 - Considerations. 11:23 - Thanks and expectation.