У нас вы можете посмотреть бесплатно OPTIMAL ECONOMIC-ENVIRONMENTAL INDICES-HYBRID PV/ WIND BASED BATTERY STORAGE SYSTEM-TLBO ALGORITHM или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
DESIGN DETAILS This Matlab design is based on an application of hybrid PV/Wind energy and battery storage in the islanded area. This work’s main target allows the distributed energy resources to contribute efficiently to the economic feasibility and enhance the environmental impact of the hybrid renewable energy source. Several factors such as levelized cost of energy (COE), greenhouse gas (GHG) emissions, and loss of power supply probability are studied. A combined solution is to compromise the economic and environmental aspects. The optimal configuration of the hybrid PV/Wind along with battery-storage and diesel engine as secondary source is obtained via TLBO algorithm and tested using MATLAB software. The objective function,J=min[f_1,f_2] F_1=∑_(t∈T)▒〖COE(X_t ), t∈T〗 F_2=∑_(i∈G)▒〖GHG(X_t ), i∈G〗 REFERENCES Reference Paper-1: Optimal Economic and Environmental Indices for Hybrid PV/ Wind Based Battery Storage System Author’s Name: Ahmed Elnozahy, Ali M. Yousef, Sherif S. M. Ghoneim, Saad A. Mohamed Abdelwahab, Moayed Mohamed, Farag K. Abo Elyousr Source: Springer Year: 2021 Reference Paper-2: Optimal distributed generation and battery energy storage units integration in distribution systems considering power generation uncertainty Author’s Name: Mansur Khasanov, Salah Kamel, Claudia Rahmann, Hany M. Hasanien and Ahmed Al-Durra Source: IET Year: 2021 Request source code for academic purpose, fill REQUEST FORM below, http://www.verilogcourseteam.com/requ... If you need Matlab p-code(encrypted files) to check the results, contact us by email to [email protected] You may also contact +91 7904568456 by WhatsApp Chat, for paid services. We are also available on Telegram and Signal. Visit Website: http://www.verilogcourseteam.com/ Visit Our Social Media Like our Facebook Page: / verilogcourseteam Subscribe: / @verilogteam Subscribe: / verilogcourseteammatlabproject Subscribe: / verilogcourseteam