У нас вы можете посмотреть бесплатно A Meta-Bayesian Approach for Rapid Online Parametric Optimization for Wrist-based Interactions или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
A Meta-Bayesian Approach for Rapid Online Parametric Optimization for Wrist-based Interactions Yi-Chi Liao, Ruta Desai, Alec M Pierce, Krista E. Taylor, Hrvoje Benko, Tanya R. Jonker, Aakar Gupta CHI 2024: The ACM CHI Conference on Human Factors in Computing Systems Session: Haptics and Embodied Interaction A Wrist-based input often requires tuning parameter settings in correspondence to between-user and between-session differences, such as variations in hand anatomy, wearing position, posture, etc. Traditionally, users either work with predefined parameter values not optimized for individuals or undergo time-consuming calibration processes. We propose an online Bayesian Optimization (BO)-based method for rapidly determining the user-specific optimal settings of wrist-based pointing. Specifically, we develop a meta-Bayesian optimization (meta-BO) method, differing from traditional human-in-the-loop BO: By incorporating meta-learning of prior optimization data from a user population with BO, meta-BO enables rapid calibration of parameters for new users with a handful of trials. We evaluate our method with two representative and distinct wrist-based interactions: absolute and relative pointing. On a weighted-sum metric that consists of completion time, aiming error, and trajectory quality, meta-BO improves absolute pointing performance by 22.92% and 21.35% compared to BO and manual calibration, and improves relative pointing performance by 25.43% and 13.60%. Web:: https://programs.sigchi.org/chi/2024/... Pre-recorded video presentations for Papers at CHI 2024