У нас вы можете посмотреть бесплатно Can You Simplify This Complex Rational Equation? или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Can you find x from this polynomial fraction? Solve: (x⁷ + x⁵ + x³)/(x⁶ + x⁵ + x⁴) = 87/29, Find x This problem features high-degree polynomials in both numerator and denominator! There's a brilliant factoring technique. The key is factoring: numerator = x³(x⁴ + x² + 1) and denominator = x⁴(x² + x + 1). This simplifies the fraction to [x³(x⁴ + x² + 1)]/[x⁴(x² + x + 1)] = (x⁴ + x² + 1)/[x(x² + x + 1)] = 87/29, making it much more manageable. 💡 Pause and try solving it before watching! This problem teaches you: ✓ Polynomial factoring techniques ✓ Rational expression simplification ✓ Strategic common factor extraction ✓ Cross-multiplication methods ✓ High-degree equation solving Perfect for students preparing for: • Math Olympiads (IMO, AMC, AIME) • Competition mathematics • Advanced Algebra courses • Anyone who loves rational equations! The solution requires careful factoring but yields a clean answer! 👍 Like if you factored it correctly! 💬 Share your approach in the comments 🔔 Subscribe for more challenging Olympiad problems #matholympiad #mathematics #algebra #rationalequations #polynomials #factoring #simplification #problemsolving #mathchallenge #competitionmath #mathpuzzle #stem #advancedmath