У нас вы можете посмотреть бесплатно Intelligent Robots in 2026: Are We There Yet? [Nikita Rudin] - 760 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Today, we're joined by Nikita Rudin, co-founder and CEO of Flexion Robotics to discuss the gap between current robotic capabilities and what’s required to deploy fully autonomous robots in the real world. Nikita explains how reinforcement learning and simulation have driven rapid progress in robot locomotion—and why locomotion is still far from “solved.” We dig into the sim2real gap, and how adding visual inputs introduces noise and significantly complicates sim-to-real transfer. We also explore the debate between end-to-end models and modular approaches, and why separating locomotion, planning, and semantics remains a pragmatic approach today. Nikita also introduces the concept of "real-to-sim", which uses real-world data to refine simulation parameters for higher fidelity training, discusses how reinforcement learning, imitation learning, and teleoperation data are combined to train robust policies for both quadruped and humanoid robots, and introduces Flexion's hierarchical approach that utilizes pre-trained Vision-Language Models (VLMs) for high-level task orchestration with Vision-Language-Action (VLA) models and low-level whole-body trackers. Finally, Nikita shares the behind-the-scenes in humanoid robot demos, his take on reinforcement learning in simulation versus the real world, the nuances of reward tuning, and offers practical advice for researchers and practitioners looking to get started in robotics today. 🗒️ For the full list of resources for this episode, visit the show notes page: https://twimlai.com/go/760. 🔔 Subscribe to our channel for more great content just like this: https://youtube.com/twimlai?sub_confi... 🗣️ CONNECT WITH US! =============================== Subscribe to the TWIML AI Podcast: https://twimlai.com/podcast/twimlai/ Follow us on Twitter: / twimlai Follow us on LinkedIn: / twimlai Join our Slack Community: https://twimlai.com/community/ Subscribe to our newsletter: https://twimlai.com/newsletter/ Want to get in touch? Send us a message: https://twimlai.com/contact/ 📖 CHAPTERS =============================== 00:00 - Introduction 04:07 - Is robot locomotion solved? 06:04 - Sim-to-real gap 08:58 - Adding semantics to policies 09:42 - Modular vs end-to-end architectures 10:29 - Planner model 12:21 - Adapting RL techniques from quadrupeds to humanoids 15:39 - Behind robot demos 18:09 - Humanoid robots in home environments 22:03 - Training approach 23:56 - VLA models 27:59 - Closing the sim-to-real gap 32:55 - Task orchestration using VLMs 36:38 - Tool use 38:10 - Model hierarchy 43:37 - Simulator versus simulation environment 44:57 - Combining imitation learning and reinforcement learning 46:42 - RL in real world versus RL in simulation 52:58 - Reward tuning and value functions in robotics 56:38 - Predictions 1:00:10 - Humanoids, quadropeds, and wheeled platforms 1:02:45 - Advice, recommended robot kits, and community platforms 🔗 LINKS & RESOURCES =============================== Flexion Robotics - https://flexion.ai/ Flexion Robotics (Tweet) - https://x.com/FlexionRobotics/status/... Reinforcement Learning for Industrial AI with Pieter Abbeel - #476 - https://twimlai.com/podcast/twimlai/r... 📸 Camera: https://amzn.to/3TQ3zsg 🎙️Microphone: https://amzn.to/3t5zXeV 🚦Lights: https://amzn.to/3TQlX49 🎛️ Audio Interface: https://amzn.to/3TVFAIq 🎚️ Stream Deck: https://amzn.to/3zzm7F5