У нас вы можете посмотреть бесплатно Chat and RAG with Tabular Databases Using Knowledge Graph and LLM Agents или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video, together we will go through all the steps to construct a #knowledgegraph from Tabular Datasets and design a ChatBot APP to interact with the Knowledge Graph using natural language. For this purpose, we will use Knowledge Graph LLM agents and the GPT model. We will design a Chatbot that can: 1. Chat with Graph DB using an improved LLM agent 2. Chat with Graph DB using a simple LLM agent 3. RAG with Graph DB Moreover, in this video, I will show you the second RAG approach for interacting with Tabular data but this time, using the knowledge graph. The code is available on the Github repository. 🚀 GitHub Repositories: Advanced Q&A and RAG series: https://github.com/Farzad-R/Advanced-... LLM-Zero-To-Hundred Series: https://github.com/Farzad-R/LLM-Zero-... 00:00:00 Intro - (Presentation) 00:00:17 Table of Contents - (Presentation) 00:01:55 Why Knowledge Graph? - (Presentation) 09:35 Project schema walk-through - (Presentation) 00:06:14 LLM Model Matters - (Presentation) 00:07:26 Series schema (RAG vs Q&A) - (Presentation) 00:08:05 Knowledge Graph Fundamentals - (Presentation) 00:10:29 How to Construct Knowledge Graph - (Presentation) 00:14:12 ChatBot Schema walk-through - (Presentation) 00:16:02 Knowledge Graph Agent schema walk-through - (Presentation) 00:18:00 Second RAG approach for tabular data - (Presentation) 00:18:24 Knowledge Graph for Movie Dataset - (Presentation) 00:21:41 Knowledge Graph for Microsoft medical chatbot - (Presentation) 00:22:52 ChatBot demo 00:23:36 Graph database installation and configuration 00:32:27 Code structure walk-through 00:33:25 Verify your OpenAI and Neo4j connection 00:34:39 Download the Movide dataset and generate synthetic data 00:37:15 Construct the knowledge graph from the Movie dataset 00:45:50 Creating and populating the Vector Index in Graph Database 00:51:23 Q&A with GraphDB populated with Knowledge Graph of the Tabular Data (designing the simple and improved agent) 01:07:47 RAG with GraphDB 01:13:22 Testing the ChatBot 01:17:10 Microsoft Medical Chatbot walk-through 01:22:52 Ending notes Frameworks: #langchain , #openai, gradio, #neo4j, #chatbot #rag #llm #agent #python #gpt