У нас вы можете посмотреть бесплатно MLE System Design Interview: Fraud Detection или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Looking to ace your next Machine Learning Engineer (MLE) System Design interview? This video provides a comprehensive walkthrough of designing a real-time fraud detection system for financial transactions. Whether you're preparing for a job interview at a FAANG company or any leading tech firm, understanding complex ML system architectures like this is crucial. What you'll learn in this MLE System Design Interview: End-to-End ML System Architecture: Dive deep into both real-time prediction pipelines and offline model training workflows. Real-time Fraud Detection: Understand how to process millions of transactions per day with sub-200ms latency. Key ML Components: Explore Transaction Ingestion, Feature Engineering (Feature Stores, Streaming Processors like Kafka, Flink, Redis), ML Inference Services, and Decision Engines. Machine Learning Model Selection: Discussing choices like XGBoost, LightGBM, and handling highly imbalanced datasets (oversampling, undersampling, class weights). Model Deployment Strategies: Learn about A/B testing, canary releases, and shadow mode for robust model updates. Scalability & Latency: Discover techniques for horizontal scaling and optimizing performance in high-throughput environments. Monitoring & Feedback Loops: Crucial insights into detecting data drift, concept drift, and continuous model improvement. Explainability & Privacy (PCI DSS, GDPR): Address critical considerations for financial ML systems. Practical Tech Stack: Get insights into specific technologies (Kafka, Redis, Flink, S3, Snowflake, Python, FastAPI, Docker, Kubernetes, Prometheus, Grafana). This podcast is packed with valuable information for aspiring and experienced Machine Learning Engineers. We break down the candidate's thoughtful approach to system design, covering everything from clarifying requirements to discussing trade-offs and selecting appropriate technologies. Ideal for: Machine Learning Engineer Interview Prep System Design Interview Practice Data Scientists looking to understand MLOps Engineers interested in fraud detection systems Anyone curious about real-time ML applications Don't forget to LIKE, COMMENT, and SUBSCRIBE for more MLE interview preparation content and system design deep dives! #MLE #MachineLearningEngineer #SystemDesign #FraudDetection #InterviewPrep #MLOps #RealtimeML #TechInterview #DataScience #XGBoost #Kafka #Redis #Kubernetes #faang