• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Michael Schlosser (University of Vienna), Basic Hypergeometric Proofs скачать в хорошем качестве

Michael Schlosser (University of Vienna), Basic Hypergeometric Proofs 4 года назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Michael Schlosser (University of Vienna), Basic Hypergeometric Proofs
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Michael Schlosser (University of Vienna), Basic Hypergeometric Proofs в качестве 4k

У нас вы можете посмотреть бесплатно Michael Schlosser (University of Vienna), Basic Hypergeometric Proofs или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Michael Schlosser (University of Vienna), Basic Hypergeometric Proofs в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Michael Schlosser (University of Vienna), Basic Hypergeometric Proofs

In my talk, I will present new applications of basic hypergeometric series to specific problems in enumerative combinatorics. The combinatorial problems we are interested in concern multiply refined equidistributions on ascent sequences. (I will gently explain these notions in my talk!) Using bijections we are able to suitably decompose some quadruple distributions we are interested in and obtain functional equations and ultimately generating functions from them, in the form of explicit basic hypergeometric series. The problem of proving equidistributions then reduces to applying suitable transformations of basic hypergeometric series. The situation in our case however is tricky (caused by the fact how the power series variable r appears in the base q=1−r of the respective basic hypergeometric series; so being interested in the generating function in r as a Maclaurin series, we are thus interested in the analytic expansion of the nonterminating basic hypergeometric series in base q around the point q=1), as none of the known transformations appear to directly work to settle our problems; we require the derivation of new identities. Specifically, we use the classical Sears transformation and apply some analytic tools to establish a new non terminating 4ϕ3 transformation formula of base q, valid as an identity in a neighborhood around q=1. We use special cases of this formula to deduce two different quadruple equidistribution results involving Euler--Stirling statistics on ascent sequences. One of them concerns a symmetric equidistribution, the other confirms a bi symmetric equidistribution that was recently conjectured in a paper (published in JCTA) by Shishuo Fu, Emma Yu Jin, Zhicong Lin, Sherry H.F. Yan, and Robin D.B. Zhou. This is joint work with Emma Yu Jin. For full results (and further ones), see https://arxiv.org/abs/2010.01435

Comments

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5