У нас вы можете посмотреть бесплатно Hands-on Support Vector Machines | Data Science Case Study in Python или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
📊 In this video, we'll cover the Internet Firewall Case Study from Kaggle. Join us as we walk you through the steps to handle categorical and numerical variables in this dataset: Internet Firewall Dataset. 🔍 Step 1: Differentiating Variables First, we'll identify the categorical and numerical variables. 🚦 Variables like network addresses have no numerical significance and will be treated as categories. 🗂️ This distinction is crucial for the next steps! 🔄 Step 2: Encoding Categorical Variables Categorical variables need to be converted into numerical form for the algorithm. 🧩 We'll explore different encoding techniques: 🔢 Low Cardinality: Easily converted using dummies or one-hot encoding. 🎯 High Cardinality: Use target encoding with category encoders. 📏 Step 3: Scaling the Data To prepare our data, we apply a robust scaler. ⚖️ This ensures that outliers, which could represent meaningful activity for a firewall, are not suppressed. 🌐 🧠 Step 4: Fitting the Model With our data ready, we fit an SVM classifier with a linear kernel. 🧩 This step involves training the model and evaluating its performance. 📈 🔍 Step 5: Evaluating Results Finally, we analyze the results to see how well our model performs. 📊 We'll discuss the metrics and insights gained from our SVM classifier. Dataset Link: https://www.kaggle.com/datasets/tungu... 💻 Join Us! Whether you're new to data science or looking to improve your skills, this hands-on case study is perfect for you! 📚 Don't forget to like, subscribe, and hit the bell icon for more tutorials! 🔔