У нас вы можете посмотреть бесплатно Maryland Robotics Center Seminar, November 22, 2024: Gaurav Sukhatme или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Maryland Robotics Center Seminar: Learning Coordinated Performant Flight with 20 Neurons Gaurav Sukhatme, Ph.D. Professor of Computer Science and Electrical Engineering Donald M. Aldstadt Chair in Advanced Computing Director, USC School of Advanced Computing University of Southern California We have recently demonstrated the possibility of learning controllers that are zero-shot transferable to groups of real quadrotors via large-scale, multi-agent, end-to-end reinforcement learning. We train policies parameterized by neural networks that can control individual drones in a group in a fully decentralized manner. Our policies, trained in simulated environments with realistic quadrotor physics, demonstrate advanced flocking behaviors, perform aggressive maneuvers in tight formations while avoiding collisions with each other, break and re-establish formations to avoid collisions with moving obstacles, and efficiently coordinate in pursuit-evasion tasks. The model learned in simulation transfers to highly resource-constrained physical quadrotors. Motivated by these results and the observation that neural control of memory-constrained, agile robots requires small yet highly performant models, the talk will conclude with some thoughts on coaxing learned models onto devices with modest computational capabilities. For more information on the Maryland Robotics Center see: https://robotics.umd.edu