У нас вы можете посмотреть бесплатно Solving the Sequential Bottleneck: The "CALM" Approach to AI Compute или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
The efficiency of LLMs is currently limited by discrete token generation. This analysis explores "CALM"—a fundamental shift to continuous vector prediction that significantly reduces computational cost. In this episode of SciPulse, we dissect the research behind Continuous Autoregressive Language Models (CALM). Current Large Language Models operate on a sequential, token-by-token basis, creating a hard limit on efficiency. The researchers argue that overcoming this bottleneck requires a new design axis: increasing the "semantic bandwidth" of each generative step.We examine the paper's novel methodology, which utilizes a high-fidelity autoencoder to compress chunks of K tokens into single continuous vectors. This allows the model to predict the next vector rather than the next token, effectively reducing the number of generative steps by a factor of K. We will also break down the "likelihood-free framework" developed to enable robust training and controllable sampling in this continuous domain. Finally, we look at the performance-compute trade-off. Experiments indicate that CALM matches the performance of strong discrete baselines but at a substantially lower computational cost. This establishes next-vector prediction as a scalable pathway toward the next generation of ultra-efficient language models. This episode provides a summary and analysis of peer-reviewed research for educational purposes. While we strive for accuracy, viewers are encouraged to consult the original paper for the complete data, mathematical proofs, and experimental nuances. Read the Paper: https://arxiv.org/abs/2510.27688 #LargeLanguageModels #MachineLearning #AIResearch #ComputerScience #DeepLearning #NaturalLanguageProcessing #VectorPrediction #CALM #SciPulse #AIArchitecture #ComputeEfficiency #NeuralNetworks #ArtificialIntelligence #TechScience #ResearchAnalysis