У нас вы можете посмотреть бесплатно CSCI 3151 - M37 - Overfitting, capacity, and deep network generalization или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
This module reframes the classic “bias–variance / overfitting” story in the way it actually shows up in modern deep learning: large networks often have far more parameters than data, can drive training error near zero, and yet may still generalize—until they don’t. We connect the textbook U-shaped picture to deep-network realities like effective capacity (architecture + optimizer + regularization + data), interpolation, and why “more parameters” is not the whole story for generalization. On the practical side, we run controlled PyTorch experiments that vary MLP capacity and track both training and validation performance. We also discuss common deep-learning failure modes that are not captured by training loss alone, including spurious correlations and distribution shift, and how tools like early stopping, weight decay, dropout, and data augmentation act as levers on effective capacity. Course module page: https://web.cs.dal.ca/~rudzicz/Teaching/CS...