У нас вы можете посмотреть бесплатно Python List Interview Question (AI) in Hindi - Live Class-5 (Recording) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Topics Covered in This Session 🔹 1. Shallow Copy vs Deep Copy Used copy.copy() to demonstrate shallow copy Showed that: Top-level elements are copied Nested objects are shared Demonstrated how modifying: Primitive elements affects only copied list Nested list affects both original and copied list 🔹 2. Reference Assignment (= operator) Assigned one list to another variable (l3 = l1) Explained: Both variables point to the same memory Any modification reflects in both lists Clarified difference between: Copying a list Referencing a list 🔹 3. Deep Copy Used copy.deepcopy() to create a fully independent copy Demonstrated: Changes in nested elements do not affect original list Explained when deep copy is required (nested data, ML datasets) 🔹 4. Iterating Over a List Used for loop to: Print all elements Traverse list values Explained linear traversal concept 🔹 5. Finding Sum of List Elements (Manual) Calculated sum using loop and accumulator Introduced reduction/aggregation logic Linked to real-world data aggregation 🔹 6. Using sum() with List Comprehension Calculated: Sum of even numbers Sum of all elements Compared manual loop vs Pythonic approach 🔹 7. List Comprehension Basics Created: Squares of numbers Filtered values Explained syntax and readability benefits 🔹 8. Data Cleaning Using List Comprehension Removed negative values from list Connected to: Data preprocessing ML dataset cleaning 🔹 9. Conditional Transformation Converted only even numbers to squares Compared: List comprehension approach Traditional for loop with append() 🔹 10. Flattening a 2D List Flattened nested list using: List comprehension Nested for loops Explained real-world use: Matrix to vector Image/data preprocessing ⏱️ Time & Memory Complexity Analysis 1️⃣ Shallow Copy (copy.copy) Time Complexity: O(n) Memory Complexity: O(n) (references reused for nested objects) 2️⃣ Deep Copy (copy.deepcopy) Time Complexity: O(n) (including nested elements) Memory Complexity: O(n) (full duplication) 3️⃣ Reference Assignment (=) Time Complexity: O(1) Memory Complexity: O(1) ⚠️ No new list created 4️⃣ Loop Traversal / Sum Time Complexity: O(n) Memory Complexity: O(1) 5️⃣ List Comprehension (Filtering / Mapping) Time Complexity: O(n) Memory Complexity: O(n) (new list created) 6️⃣ Generator Expression with sum() Time Complexity: O(n) Memory Complexity: O(1) ✅ (best practice) 7️⃣ Flattening 2D List Time Complexity: O(n × m) Memory Complexity: O(n × m) 🎯 Interview Takeaway (One-Line) Shallow copy shares nested objects, deep copy duplicates everything, list comprehension improves readability but doesn’t reduce time complexity.