У нас вы можете посмотреть бесплатно Getting Started with the Google Coral Dev Board Micro - Low-Power Object Detection | DigiKey или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Dive into the world of AI with our latest tutorial featuring the Google Coral Dev Board Micro! This microcontroller board packs a punch with its dual-core ARM Cortex-M7 and M4, complemented by a Tensor Processing Unit (TPU) AI accelerator. We guide you through the process of training a custom object detection model (MobileNetV2-SSD) and deploying it to the Coral Micro, achieving remarkable inference speeds of 8-12 frames per second using 320x320 color input images, all for under 1 watt. A written step-by-step guide for this tutorial can be found here: https://www.digikey.com/en/maker/proj... Get the Coral Dev Board Micro here: https://www.digikey.com/en/products/d... Code for this tutorial can be found here: https://github.com/ShawnHymel/google-... We start by collecting data from the Coral Micro board and labeling the data using https://www.makesense.ai/. We then train our custom object detection model using MediaPipe. MediaPipe is Google’s workflow for training common machine learning models using custom data and deploying them to a variety of systems. At the end of the training process, you will produce a variety of model formats for TensorFlow. While you can deploy them to any number of systems, we specifically need the TensorFlow Lite (TFLite) model compiled and optimized for a TPU. From there, we deploy the TFLite model to the Coral Micro with a custom app written using the FreeRTOS-based coralmicro SDK. The firmware takes images from the onboard camera and performs inference using the optimized model running on the TPU. Bounding box information is then streamed over the serial port (USB and UART pins) as well as out through an optional web server that can be accessed via USB. By browsing to the Coral Micro’s server, you can visualize what the camera sees along with bounding box information to help you debug your model. Whether you're testing, developing, or debugging, this tutorial provides all the tools and knowledge you need to make the most out of the Google Coral Dev Board Micro! MediaPipe documentation: https://developers.google.com/mediapi... Example of training an object detection model using MediaPipe: https://developers.google.com/mediapi... Getting started with the Coral Dev Board Micro: https://coral.ai/docs/dev-board-micro... coralmicro API documentation: https://coral.ai/docs/reference/micro/ Learn more: Maker.io - https://www.digikey.com/en/maker DigiKey’s Blog – TheCircuit https://www.digikey.com/en/blog Connect with DigiKey on Facebook / digikey.electronics And follow us on X / digikey 0:00 Intro 0:57 Flash image collection code 6:06 Collect images 7:00 Label bounding boxes in images 10:41 Train object detection model 20:05 Test object detection model 25:23 Deploy model to Google Coral Micro 29:17 Test live object detection inference