У нас вы можете посмотреть бесплатно The Engineering Mindset for AI: From Automation to Guardrails или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Is your organization ready for the rapid pace of AI adoption? We sat down with Rob Koch (Slalom Build, CNCF Deaf and Hard of Hearing Working Group Co-Chair) to discuss how engineers can master automation in the age of non-deterministic systems, focusing on real-world use cases in Kubernetes and platform engineering. In this episode of The AI Kubernetes Show, Koch provides essential insights on building a robust strategy for AI adoption. He emphasizes moving beyond a "move fast, fail fast" approach to focus on clear outcomes, which he describes as applying the engineering mindset to AI. A key discussion point is mitigating risk in non-deterministic systems by implementing strong guardrails, constraints, and human oversight—often by providing precise context and clear specifications. Koch shares a successful example of automating repetitive tasks using AI sub-agents in a database upgrade project. The system analyzed logs, diagnosed resource needs (checking for over/under-provisioning), and automatically drafted documentation, aligning with the "Don't Repeat Yourself" (DRY) principle. Additionally, he highlights the transformative power of AI for accessibility and the promise of LLMs in sign language recognition. Read the blog post: www.buoyant.io/ai-kubernetes-episode/the-engineering-mindset-for-ai-from-automation-to-guardrails Follow us on LinkedIn: / the-ai-kubernetes-show Takeaways ✓ Strategic AI adoption starts with defining the desired outcome and working backward, not a "fail fast" approach. ✓ Mitigate risk in non-deterministic AI systems by implementing guardrails, human oversight, and limiting context. ✓ AI is best suited for automating repetitive tasks (DRY principle) to free up engineering time. ✓ Subject matter expertise remains crucial for verifying AI output and detecting "hallucinations." ✓ AI is a powerful tool for accessibility, helping bridge communication gaps (e.g., English syntax correction for ASL users). If you're tackling AI implementation or just getting started, hit the like button and subscribe for more deep dives into platform engineering! What is the biggest challenge your team faces when adopting AI? Let us know in the comments below! #AI #Kubernetes #PlatformEngineering #AIAutomation #Accessibility