У нас вы можете посмотреть бесплатно Stop Building AI Agents Until You Watch This (When They Actually Make Sense) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Everyone is building AI agents right now—but most of them shouldn’t exist. In this video, I break down what AI agents actually are, when they make sense to build, and when a simple script or workflow is objectively better. After building real production agents—from token scanners and research agents to fully autonomous execution loops—I’ve learned the hard truth: agents are powerful, but they’re also overused, fragile, and often unnecessary. This video covers: • The difference between scripts, workflows, and true agents • When agents create real leverage vs artificial complexity • The biggest mistake developers make when building agents • Why most “agent startups” are just wrappers with extra steps • The architecture behind effective, production-grade agents • How to decide if you actually need an agent or not We’ll also look at real-world examples of agent systems, including research agents, trading agents, and autonomous execution loops—and why most fail. If you're building with Claude, GPT, OpenAI tools, or open-source frameworks, understanding this will save you months of wasted effort. Agents aren’t magic. They’re just software with decision loops. The advantage comes from using them at the right abstraction layer.