• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

UPAR: Unified Pedestrian Attribute Recognition and Person Retrieval скачать в хорошем качестве

UPAR: Unified Pedestrian Attribute Recognition and Person Retrieval 1 год назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
UPAR: Unified Pedestrian Attribute Recognition and Person Retrieval
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: UPAR: Unified Pedestrian Attribute Recognition and Person Retrieval в качестве 4k

У нас вы можете посмотреть бесплатно UPAR: Unified Pedestrian Attribute Recognition and Person Retrieval или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон UPAR: Unified Pedestrian Attribute Recognition and Person Retrieval в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



UPAR: Unified Pedestrian Attribute Recognition and Person Retrieval

Authors: Specker, Andreas; Cormier, Mickael*; Beyerer, Jürgen Description: Recognizing soft-biometric pedestrian attributes is essential in video surveillance and fashion retrieval. Recent works show promising results on single datasets. Nevertheless, the generalization ability of these methods under different attribute distributions, viewpoints, varying illumination, and low resolutions remains rarely understood due to strong biases and varying attributes in current datasets. To close this gap and support a systematic investigation, we present UPAR, the Unified Person Attribute Recognition Dataset. It is based on four well-known person attribute recognition datasets: PA100K, PETA, RAPv2, and Market1501. We unify those datasets by providing 3,3M additional annotations to harmonize 40 important binary attributes over 12 attribute categories across the datasets. We thus enable research on generalizable pedestrian attribute recognition as well as attribute-based person retrieval for the first time. Due to the vast variance of the image distribution, pedestrian pose, scale, and occlusion, existing approaches are greatly challenged both in terms of accuracy and efficiency. Furthermore, we develop a strong baseline for PAR and attribute-based person retrieval based on a thorough analysis of regularization methods. Our models achieve state-of-the-art performance in cross-domain and specialization settings on PA100k, PETA, RAPv2, Market1501-Attributes, and UPAR. We believe UPAR and our strong baseline will contribute to the artificial intelligence community and promote research on large-scale, generalizable attribute recognition systems.

Comments

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5