• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Efficient Inference for Large Language Models with LLM.int8() скачать в хорошем качестве

Efficient Inference for Large Language Models with LLM.int8() 9 месяцев назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Efficient Inference for Large Language Models with LLM.int8()
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Efficient Inference for Large Language Models with LLM.int8() в качестве 4k

У нас вы можете посмотреть бесплатно Efficient Inference for Large Language Models with LLM.int8() или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Efficient Inference for Large Language Models with LLM.int8() в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Efficient Inference for Large Language Models with LLM.int8()

The podcast discusses a groundbreaking paper titled 'LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale' that introduces a new method for 8-bit matrix multiplication within transformer models to run large language models efficiently without sacrificing performance. The paper addresses the memory-intensive nature of large language models and the challenges of 8-bit quantization accuracy with outlier features in larger models. Engineers can leverage LLM.int8() to reduce memory requirements and efficiently run large language models without performance degradation, even at scales exceeding billions of parameters. The method incorporates vector-wise quantization and mixed-precision decomposition to maintain full 16-bit performance in perplexity and zeroshot accuracy across large models, demonstrating significant memory savings and modest speedups for inference. Read full paper: https://arxiv.org/abs/2208.07339 Tags: Artificial Intelligence, Natural Language Processing, 8-bit Quantization, Transformer Models

Comments

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5