У нас вы можете посмотреть бесплатно Dungeon Game | Dynamic programming | Leetcode или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
This video explains a very important programming interview problem which is the dungeon game from leetcode #174.In this game, we are given a matrix of size N * M. Princess is present in the last cell (N,M) and the knight who will save her will start at (0,0).Each cell of the matrix is room of dungeon.Each of the room can be occupied by a demon or a magic orb.Knight looses an equal amount of health to fight demon and gains equal amount of health from a magical orb.As soon as the health of the knight reaches 0,he dies.We need to find the minimum health with which the knight should start such that there is atleast one possible path from the cell (0,0) to cell (N,N), so that the knight saves the princess.This is a variant of Minimum cost path problem.This can be solved using binary search and also using recursion.The best method to solve this is by using dynamic programming.I have explained the intuition for dynamic programming solution and have also explained the algorithm using proper examples.I have also shown the code walk through of the bottom-up dynamic programming at the end of the video.CODE LINK is present below as usual. If you find any difficulty or have any query then do COMMENT below. PLEASE help our channel by SUBSCRIBING and LIKE our video if you found it helpful...CYA :) ================================================================= INSTAGRAM: / surya.pratap.k LinkedIn: / surya-pratap-kahar-47bb01168 ================================================================= CODE LINK: https://gist.github.com/SuryaPratapK/... USEFUL PROBLEM:- Minimum cost path: • Minimum path sum | Min cost Path | Dynamic...