У нас вы можете посмотреть бесплатно Where is my money? MoneyRAG или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
AI Answers: Why Am I Broke? 💸🤖 Ever wonder where your money goes every month? In 2026, we don't just wonder—we ask AI. I built MoneyRAG, an AI-powered app that lets you CHAT with your bank statements. Upload your credit card CSVs and ask questions like: "How much did I spend on fast food last year?" "Am I paying for duplicate subscriptions?" "Show me suspicious transactions" 🔗 Try it here: https://huggingface.co/spaces/SajilAw... 📂 GitHub: https://github.com/AwaleSajil/money-rag ⚙️ HOW IT WORKS (Technical Overview): 🔹 Streamlit UI - Upload CSV transaction files 🔹 LLM Schema Normalization - Handles any bank format (Chase, Discover, etc.) 🔹 Web Enrichment - DuckDuckGo search enriches confusing transaction descriptions 🔹 Dual Storage: • SQLite for structured queries (math/aggregations) • Qdrant vector DB for semantic search 🔹 MCP Server - Two tools: • SQL Query Executor (precise calculations) • Semantic Search (understanding intent) 🔹 LangChain Agent - Decides which tool to use based on your question 🔹 Stateful Memory - Remembers conversation context 🚀 GETTING STARTED: Authenticate - Use Google Gemini or OpenAI API • Get free Google API: https://aistudio.google.com/app/apikey • Get OpenAI API: https://platform.openai.com/api-keys Get Transaction History • Chase Credit Card: • ✅ How To Download Chase Transaction Histo... • Discover Credit Card: • View Your Discover Credit Card Payment His... Upload & Ingest - AI does ETL processing, web enrichment, and vectorization Ask Questions! • "Where did I spend my money last month?" • "How much on haircuts this year?" • "Find all Starbucks purchases" 🎯 CHALLENGES SOLVED: Long-tail Top-K Problem - How to set the right K value for semantic search? Solution: Agent iteratively increases K if it detects incomplete results (long tail detected). 🔮 FUTURE DIRECTIONS: 📸 Bill Image Processing - Upload receipt photos, link to transactions 🍺 "How much did I spend on beer last year?" 🥗 "What food should I replace to eat healthier on a budget?" 🛠️ TECH STACK: • LangChain & LangGraph (Agent orchestration) • Google Gemini / OpenAI GPT-4 (LLMs) • Qdrant (Vector database) • SQLite (Structured storage) • FastMCP (Model Context Protocol) • Streamlit (Web interface) • DuckDuckGo Search (Merchant enrichment) 👥 CONTRIBUTORS: • Sajil Awale - https://github.com/AwaleSajil • Simran KC - https://github.com/iamsims #AI #MachineLearning #PersonalFinance #RAG #LLM #OpenSource #LangChain #Python #FinTech #DataScience