У нас вы можете посмотреть бесплатно Introduction to TensorFlow | A Beginner’s Guide to Deep Learning Framework или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video, you’ll learn the fundamentals of TensorFlow, one of the most popular deep learning frameworks used by Data Scientists, Machine Learning Engineers, and AI professionals. This lesson introduces TensorFlow from scratch, explaining its purpose, core concepts, and how it is used to build and train deep learning models. If you’re new to deep learning or transitioning into machine learning, this video will give you a solid foundation. 🔹 What you’ll learn in this video: What TensorFlow is and why it is used Key components of the TensorFlow framework How TensorFlow supports deep learning workflows Common use cases in machine learning and AI Who should learn TensorFlow and when to use it This tutorial is designed for beginners, students, and professionals preparing for careers in Data Science, Machine Learning, and AI. No prior deep learning experience is required. 📌 Tools & Technologies: TensorFlow, Python If you find this video helpful, don’t forget to like, subscribe, and turn on notifications for more machine learning and data engineering tutorials. 00:00:00 Introduction & Course Overview 00:03:45 What is TensorFlow? 00:09:20 Why TensorFlow is Important in Deep Learning 00:15:10 TensorFlow Ecosystem & Architecture 00:22:30 Installing TensorFlow (Environment Setup) 00:30:15 Understanding Tensors and Data Types 00:41:40 TensorFlow Core Components Explained 00:55:20 Computational Graphs & Execution Model 01:07:10 Building Blocks of Deep Learning in TensorFlow 01:20:35 Common TensorFlow Use Cases 01:32:50 Best Practices & Common Beginner Mistakes 01:40:10 Learning Path: What to Study Next 01:45:30 Summary & Final Thoughts