• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

ML Production Pipelines: A Classification Model скачать в хорошем качестве

ML Production Pipelines: A Classification Model 4 года назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
ML Production Pipelines: A Classification Model
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: ML Production Pipelines: A Classification Model в качестве 4k

У нас вы можете посмотреть бесплатно ML Production Pipelines: A Classification Model или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон ML Production Pipelines: A Classification Model в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



ML Production Pipelines: A Classification Model

In this talk, we will present how we tied Python together with Databricks and MLflow to productionalize a machine learning pipeline. Through the deployment of a fairly standard classification model, we will present what a machine learning pipeline in Production could look like. The project consists of two pipelines; training and prediction. We are using the S3 Bucket as a source of data. The training pipeline trains various models on data, registers them in Mlflow, and stores all metrics and hyperparameters. Using Grid Search, the best model is chosen and moved to the Production Stage in MLflow. The Production model can then be deployed using Flask, or just a UDF if we want to process data in a batch. The prediction pipeline will then use the deployed model to make a prediction, whether on-demand or in a batch. The whole project is packaged as a library, which can be installed anywhere, and the pipelines can easily be configured through configuration files. About: Databricks provides a unified data analytics platform, powered by Apache Spark™, that accelerates innovation by unifying data science, engineering and business. Read more here: https://databricks.com/product/unifie... See all the previous Summit sessions: Connect with us: Website: https://databricks.com Facebook:   / databricksinc   Twitter:   / databricks   LinkedIn:   / databricks   Instagram:   / databricksinc   Databricks is proud to announce that Gartner has named us a Leader in both the 2021 Magic Quadrant for Cloud Database Management Systems and the 2021 Magic Quadrant for Data Science and Machine Learning Platforms. Download the reports here. https://databricks.com/databricks-nam...

Comments

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5