У нас вы можете посмотреть бесплатно The craziest discovery in mathematics или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
🧠 Discover modernbrain: ⚡❯❯ https://modernbrain.de ❮❮⚡ (Ad) ►All videos: http://bit.ly/1fa7Tw3 The concept of infinity has fascinated and unsettled people since time immemorial. The idea that time will continue indefinitely or that the universe could actually be infinitely large is mind-boggling. Scientists have long struggled to gain a deeper understanding of infinity. And mathematics, of all things, has revealed an astonishing discovery that would turn everything on its head: the mystery of superinfinity. There is something even greater than infinity. For there is not just "the" infinity, but actually several – and some of them far exceed our familiar notion of infinity. How can something that is already infinite suddenly seem small? This is the infinity paradox. Mathematician Georg Cantor discovered this "super-infinity" around 150 years ago, changing our understanding of infinity forever. But don't be afraid of math—all we need is simple reasoning with simple numbers. ✚Snapchat: SecondsPhysics ✚Facebook: http://on.fb.me/YJFlNt ✚Subscribe: http://bit.ly/10jgdi2 Sources and more on the topic: The History of Mathematics I by Albrecht Beutelspacher 100SecondsPhysics: science presented in a simple, concise, and entertaining format. Tags: physics, science, technology, science fiction, world view of physics, philosophy of physics, future, scientific theory, technology, research, physics documentary, documentary, natural sciences, natural science, sci-fi, science fiction, astrophysics, cosmos, universe, mathematics, math, puzzle, solution, infinity, various infinities, Georg Cantor, Cantor's diagonal argument, countable infinity, uncountable infinity, mathematical infinity, natural numbers, real numbers, Galileo Galilei, Georg Cantor