У нас вы можете посмотреть бесплатно The null space explained!!! или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video, we break down the null space of a matrix in a clear and intuitive way. Starting from the equation Ax = 0, you’ll see exactly what the null space represents and why it plays such a central role in linear algebra. We begin by explaining why the null space is always a subspace, then move step-by-step through how to find a basis for the null space using row-reduction. Along the way, we clarify the difference between pivot variables and free variables, and show how free variables lead to infinitely many solutions. Finally, we connect everything together with the Rank–Nullity Theorem, explaining how rank and nullity relate to the number of columns of a matrix and what this tells us about the structure of solutions. This video is perfect for students taking Linear Algebra or anyone who wants a deeper, conceptual understanding of solution spaces. Topics covered: • Null space and homogeneous systems • Subspaces • Pivot variables vs free variables • Basis of the null space • Infinite solution sets • Rank and nullity • The Rank–Nullity Theorem If you want linear algebra to actually make sense, this lesson is for you.In this video, we break down the null space of a matrix in a clear and intuitive way. Starting from the equation Ax = 0, you’ll see exactly what the null space represents and why it plays such a central role in linear algebra. We begin by explaining why the null space is always a subspace, then move step-by-step through how to find a basis for the null space using row-reduction. Along the way, we clarify the difference between pivot variables and free variables, and show how free variables lead to infinitely many solutions. Finally, we connect everything together with the Rank–Nullity Theorem, explaining how rank and nullity relate to the number of columns of a matrix and what this tells us about the structure of solutions. This video is perfect for students taking Linear Algebra or anyone who wants a deeper, conceptual understanding of solution spaces. Topics covered: • Null space and homogeneous systems • Subspaces • Pivot variables vs free variables • Basis of the null space • Infinite solution sets • Rank and nullity • The Rank–Nullity Theorem If you want linear algebra to actually make sense, this lesson is for you.