У нас вы можете посмотреть бесплатно MplusWizard: 19. Categorical outcomes. Probit regression. или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
This video is part of the mpluswizard.com course series. If you like this, please like and subscribe. ;) Course files can be downloaded from: https://www.dropbox.com/sh/qf9iz8ogqs... !!!Next video!!! : • MplusWizard: 20. Count outcomes part ... **Course notes:** Okay, I had intended to include a quick 2-min video discussing the two, but in the end went for just text. 😉 Here goes: 1. There is NO rule that can help you decide between logit and probit. One is not better than the other. 2. You could go for the regression type most often used in your field. 3. Probit regression advantage: you get model fit indices. 4. Logistic regression advantage: you get odds ratios, which make interpretation easier and nicer. 5. You might run both and report the model fit from the probit regression and the odds ratios from the logistic regression (but in this case, you should specify you ran it both ways and also provide the coefficients from the probit regression).