У нас вы можете посмотреть бесплатно Decoupling Algorithm from Hardware Customizations for Software-Defined Reconfigurable Computing или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
SAMPL Talk 2021/11/18 Title: Decoupling Algorithm from Hardware Customizations for Software-Defined Reconfigurable Computing Speaker: Yi-Hsiang Lai(Cornell) Abstract: With the pursuit of improving compute performance under strict power constraints, there is an increasing need for deploying applications to heterogeneous hardware architectures with spatial accelerators such as FPGAs. However, although these heterogeneous computing platforms are becoming widely available, they are very difficult to program especially with FPGAs. As a result, the use of such platforms has been limited to a small subset of programmers with specialized hardware knowledge. In this talk, I will first present SuSy, a programming framework composed of a domain-specific language (DSL) and a compilation flow that enables programmers to productively build high-performance systolic arrays on FPGAs. With SuSy, programmers express the design functionality in the form of uniform recurrence equations (UREs). The URE description in SuSy is followed by a set of decoupled spatial mapping primitives that specify how to map the equations to a spatial architecture. More concretely, programmers can apply space-time transformations and several other memory and I/O optimizations to build a highly efficient systolic architecture productively. After that, I will present HeteroCL, an open-source programming infrastructure composed of a Python-based domain-specific language and an FPGA-targeted compilation flow. Similar to SuSy, HeteroCL cleanly decouples algorithm specifications from three important types of hardware customization in compute, data types, and memory architectures. In addition, HeteroCL produces highly efficient hardware implementations for a variety of popular workloads by targeting spatial architecture templates such as systolic arrays and stencil with dataflow architectures. Bio: Yi-Hsiang Lai is currently a 6th-year Ph.D. student at Cornell advised by Prof. Zhiru Zhang. He received both his Master's and Bachelor's degrees in Electrical Engineering from National Taiwan University. His research focuses on high-level synthesis for FPGAs, programming models, and compilers. - SAMPL is an interdisciplinary machine learning research group exploring problems spanning multiple layers of the system stack including deep learning frameworks, specialized hardware for training and inference, new intermediate representations, differentiable programming, and various applications. We are part of the Paul G. Allen School of Computer Science & Engineering at the University of Washington. Our group is a collaboration between researchers from Sampa, Syslab, MODE, and PLSE. Twitter: / ai_sampl SAMPL website: https://sampl.cs.washington.edu/