У нас вы можете посмотреть бесплатно Real-ESRGAN : Training Real-World Blind Super-Resolution with Pure Synthetic Data или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Abstract Though many attempts have been made in blind super resolution to restore low-resolution images with unknown and complex degradations, they are still far from addressing general real-world degraded images. In this work, we extend the powerful ESRGAN to a practical restoration application (namely, Real-ESRGAN), which is trained with pure synthetic data. Specifically, a high-order degradation modeling process is introduced to better simulate complex real world degradations. We also consider the common ringing and overshoot artifacts in the synthesis process. In addition, we employ a U-Net discriminator with spectral normalization to increase discriminator capability and stabilize the training dynamics. Extensive comparisons have shown its superior visual performance than prior works on various real datasets. We also provide efficient implementations to synthesize training pairs on the fly. Xintao Wang1 Liangbin Xie∗2,3 Chao Dong2,4 Ying Shan1 1Applied Research Center (ARC), Tencent PCG 2 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences 3University of Chinese Academy of Sciences 4 Shanghai AI Laboratory {xintaowang, yingsshan}@tencent.com {lb.xie, chao.dong}@siat.ac.cn https://github.com/xinntao/Real-ESRGAN #Real-ESRGAN #RealESRGAN #superresolution