• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

DQN Control for Inverted Pendulum with Reinforcement Learning Toolbox скачать в хорошем качестве

DQN Control for Inverted Pendulum with Reinforcement Learning Toolbox 2 года назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
DQN Control for Inverted Pendulum with Reinforcement Learning Toolbox
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: DQN Control for Inverted Pendulum with Reinforcement Learning Toolbox в качестве 4k

У нас вы можете посмотреть бесплатно DQN Control for Inverted Pendulum with Reinforcement Learning Toolbox или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон DQN Control for Inverted Pendulum with Reinforcement Learning Toolbox в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



DQN Control for Inverted Pendulum with Reinforcement Learning Toolbox

Use the Deep Q-Network (DQN) algorithm in Reinforcement Learning Toolbox™ to: 1) Create the environment 2) Create DQN agent 3) Customize policy representation 4) Train DQN agent 5) Verify trained policy 6) Deploy trained policy with code generation The provided pendulum environment has predefined observations, actions, and reward. The actions include five possible torque values, while the observations include a 50x50 grayscale image as well as the angular rate of the pendulum, and the reward is the distance from the desired upward position. See how the default DQN agent feature automatically constructs a neural network representation of the Q-function, used by the DQN agent to approximate long-term reward. Learn how to use Deep Network Designer app to graphically customize the generated Q-function representation. See how you can visualize the pendulum behavior and logged data during training, and monitor training progress. After training is complete, verify the policy in simulation to decide if further training is necessary. If you are happy with the design, deploy the trained policy using automatic code generation. 00:00 Introduction 00:33 Load Predefined Environment 01:49 Create Default DQN Agent 03:39 Construct Custom DQN Critic Network 04:26 Train DQN Agent 06:13 Simulate & Validate Performance of DQNAgent 06:29 Deployment & Code Generation of DQN Agent 06:35 Conclusion -------------------------------------------------------------------------------------------------------- Get a free product trial: https://goo.gl/ZHFb5u Learn more about MATLAB: https://goo.gl/8QV7ZZ Learn more about Simulink: https://goo.gl/nqnbLe See what's new in MATLAB and Simulink: https://goo.gl/pgGtod © 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Comments

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5