У нас вы можете посмотреть бесплатно 2019 EC3 - DAASR - Simon Vilgertshofer - Automatic detection of plan symbols in railway equipme ... или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
"Title: Automatic detection of plan symbols in railway equipment engineering using a machine learning approach Authors: Stoitchkov, Deian (1); Breier, Peer (1); Slepicka, Martin (1); Genc, Cengiz (2); Harmsen, Felix (2); Köhler, Tobias (2); Vilgertshofer, Simon (1); Borrmann, André (1) Affiliation: 1: Technical University of Munich, Germany; 2: Signon Deutschland GmbH, Berlin, Germany Keywords: Machine Learning, CNN, Infrastructure, Railway Engineering Session: Data Acquisition, Analysis, Simulation & Resilience Paper Link: https://ec-3.org/publications/confere... Abstract: Exact data in the form of technical drawings and plans of built assets are a significant requirement for the successful operation and reconstruction of such assets. When the consistency between this data and the real world situation cannot be assured, the data is not reliable and needs to be updated by comparing plans and reality. Depending on the size and number of assets this may involve an enormous amount of manual effort. In the scope of this research , an approach for supporting and automating such a process by utilizing concepts developed in the field of machine learning was developed. This paper focuses on the interpretation of technical drawings in terms of detecting and classifying plan symbols as this is a time intensive and error prone process when done manually. It is described how the capabilities of Convolutional Neural Networks are employed in analyzing images to automatically detect important plan symbols in the ?eld of Train Traffic Control and Supervision Systems and how those networks are trained without the need for a time consuming-manual labeling process."