У нас вы можете посмотреть бесплатно Radar-Based Situational Awareness for Industrial Safety Applications или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Sponsored by IEEE Sensors Council (https://ieee-sensors.org/) Title: Radar-Based Situational Awareness for Industrial Safety Applications Author: Philipp Sommer, Anton Rigner, Martin Zlatanski Affiliation: ABB Corporate Research Center, Switzerland Abstract: Collaborative robots are intended to operate in close proximity to human co-workers to improve efficiency of industrial process systems. Safeguarding humans from potential accidents caused by collisions with robots or other dangerous machinery requires situational awareness to prevent close encounters. In this paper, we present a sensing and processing platform based on lidar and radar, as well as algorithms to detect and classify target objects in the proximity of the system. Our experimental evaluation of machine learning algorithms based on hand-crafted radar features as well as convolutional neural networks applied to radar range-Doppler signatures indicates that classification into human activities (standing/walking) and robots or machinery can be performed with an accuracy of up to 96%. IEEE Sensors Conferences (https://ieee-sensors.org/conferences/) IEEE Sensors Journal (https://ieee-sensors.org/sensors-jour...) IEEE Sensors Letters (https://ieee-sensors.org/sensors-lett...) IEEE Internet of Things Journal (https://ieee-iotj.org/) IEEE SENSORS conference proceedings (https://ieeexplore.ieee.org/xpl/conho...)